	Contra Costa College

	Course Outline

	Coursemed to 39 charace spacesctives in American Theatre align with C-ID descrip

 Number
	COMP 252
	Number of Weeks
	18

	Course Title
	Data Structures and Algorithms
	Lecture Hours By Term
	54

	Prerequisite
	COMP 251
	Lab Hours By Term
	54

	Challenge Policy
	None
	*Hours By Arrangement
	

	Co-requisite
	None
	Units
	4

	Challenge Policy
	Discussion with instructor demonstrating competance with concepts and programming bility.Demonstration may be via course exams and programming assignments.
	
	

	Advisory
	None

	*HOURS BY ARRANGEMENT:
	n/a
	Hours per term.

	 ACTIVITIES: (Please provide a list of the activities students will perform in order to satisfy the HBA requirement):

	

	COURSE/CATALOG DESCRIPTION

	This course is designed to present programming concepts and methodology for large high-level language programming tasks using data abstraction, structures, and associated algorithms. Topics include lists, stacks, queues, trees, hash tables, sorting, searching, and recursion. There will be at least one programming assignment of 500-750 lines.

	COURSE OBJECTIVES:

	At the completion of the course the student will be able to:

	Apply a variety of data structure and program design techniques

	Analyze, evaluate, and compare data structures for appropriateness in programs. Structures include: singly and doubly linked lists, arrays, binary trees, graphs, stacks, queues, B-trees, and hash tables.

	Implement a variety of data structures. Some programs may require over 1000 lines of code.

	Apply recursion effectively.

INTENDED STUDENT LEARNING OUTCOMES:

	Students will be able to demonstrate use of big-O notation

	Students will be able to sucessfully design, implement, test, and debug a program of at least 500 lines that uses advanced data structures covered in class such as stacks, queues, trees, and hash tables.

 COURSE CONTENT (Lecture):
	Review of Object-Oriented Programming Using C++

	Complexity Analysis

	SLinked Lists, Stacks, and Queues

	Recursion

	Binary and Multiway Trees

	Graphs

	Sorting

	Hashing

	Data Compression and Memory Management

 COURSE CONTENT (Lab):
	Programming projects from the textbook

	Finding errors in computer programs that appear correct

	Designing algorithmic approaches to stated problems

	METHODS OF INSTRUCTION:

	Lecture

	Demonstration of concepts

	Practice Exercises and Lab Team Assignments

	Discussions

	INSTRUCTIONAL MATERIALS:

NOTE: To be UC/CSU transferable, the text must be dated within the last 7 years OR a statement of justification for a text beyond the last 7 years must be included.

	Textbook Title:
	C++ Plus Data Structures

	Author:
	Nell Dale

	Publisher:
	Jones & Bartlett Learning

	Edition/Date:
	5th Ed. / 2011

	Justification Statement:
	(For textbook beyond 7 years) n/a

	Textbook Reading Level:
	College-level

	
	

	Lab Manual Title
	(if applicable):

	Author:
	

	Publisher:
	

	Edition/Date:
	

OUTSIDE OF CLASS WEEKLY ASSIGNMENTS:

Title 5, section 55002.5 establishes that a range of 48 -54hours of lecture, study, or lab work is required for one unit of credit. For each hour of lecture, students should be required to spend an additional two hours of study outside of class to earn one unit of credit.

· State mandates that sample assignments must be included on the Course Outline of Record.

	 Outside of Class Weekly Assignments
	Hours per week

	Weekly Reading Assignments (Include detailed assignment below, if applicable)
	1

	Reading assignments are chapters and sections from the textbook

	Weekly Writing Assignments (Include detailed assignment below, if applicable)
	1

	Describe the advantages and disadvantages of the descisions made when writing a program “void sort(Stack S)” to sort S, using one additional stack and some non-array variables. Impliment stack member functions are: “bool isempty()”, “void push(int)”, and “int pop()”

	Weekly Math Problems (Include detailed assignment below, if applicable)
	1

	Using Big O notation, what is the computational complexity of the loop and why? for (cnt=0,
i=1; i<=n; i*=2) for(j=1; j<=n; j++) cnt++

	Lab or Software Application Assignments (Include detailed assignment below, if applicable)
	3

	The textbook has a section on programming projects appropriate to the material covered in the chapter. For instance, the section on classes has one where a student creates a fraction class with public methods to add, subtract, multiply and divide. There is also a private method to reduce fractions to lowest terms.

	Other Performance Assignments (Include detailed assignment below, if applicable)
	

	

STUDENT EVALUATION: (Show percentage breakdown for evaluation instruments)

	· Course must require use of critical thinking, college-level concepts & college-level learning skills.

· For degree credit, course requires essay writing unless that requirement would be inappropriate to the course objectives. If writing is inappropriate, there must be a requirement of problem-solving or skills demonstration.

	10
	%
	Essay (If essay is not included in assessment, explain below.)

	

	
	%
	Computation or Non-computational Problem Solving Skills

	
	%
	Skills Demonstration

	40
	%
	Objective Examinations

	
	
	Other (describe)

	15
	%
	Written Homework Assignments, which involves computational and/or non-computational problem solving skills

	35
	%
	Programming Projects, which involves computational and/or non-computational problem solving skills

	
	%
	

	 GRADING POLICY: (Choose LG, P/NP, or SC)

	 x
	Letter Grade
	
	Pass / No Pass
	
	Student Choice

	90% - 100% = A
	70% and above = Pass
	90% - 100% = A

	80% - 89% = B
	Below 70% = No Pass
	80% - 89% = B

	70% - 79% = C
	
	70% - 79% = C

	60% - 69% = D
	
	60% - 69% = D

	Below 60% = F
	
	Below 60% = F

	or

	70% and above = Pass

	Below 70% = No Pass

	Prepared by:
	Tom Murphy

	Date:
	SP14

Revised form 01/14

